Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study.
نویسندگان
چکیده
The optically active states in a novel (terpyridine)Ru(4H-imidazole) complex displaying an unusually broad and red-shifted absorption in the visible range are investigated experimentally and theoretically. Since this property renders the complex promising for an application as sensitizer in dye-sensitized solar cells, a detailed knowledge on the correlation between features in the absorption spectrum and structural elements is indispensable in order to develop strategies for spectroscopy/theory-guided design of such molecular components. To this aim, time-dependent density functional theory calculations, including solvent effects, are employed to analyze the experimental UV-vis absorption and resonance Raman (RR) spectra of the unprotonated and protonated forms of the complex. This provides a detailed photophysical picture for a complex belonging to a novel class of Ru-polypyridine black absorbers, which can be tuned by external pH stimuli. The complex presents two absorption maxima in the visible region, which are assigned by the calculations to metal-to-ligand charge transfer (MLCT) and intra-ligand states, respectively. RR simulations are performed in resonance with both bands and are found to correctly reproduce the observed effects of protonation. Finally, the examination of the molecular orbitals and of the RR spectra for the MLCT state shows that protonation favors a charge transfer excitation to the 4H-imidazole ligand.
منابع مشابه
In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO2 thin film electrodes.
Terpyridine 4H-imidazole-ruthenium(II) complexes are considered promising candidates for use as sensitizers in dye sensitized solar cells (DSSCs) by displaying broad absorption in the visible range, where the dominant absorption features are due to metal-to-ligand charge transfer (MLCT) transitions. The ruthenium(III) intermediates resulting from photoinduced MLCT transitions are essential inte...
متن کاملSynthesis, Characterization, Electrochemical and Spectroelectrochemical Properties of Ruthenium(II) Complexes Containing Phenylcyanamide Ligands and Effect of the Inner- Sphere on the Ru-NCN Chromophore
[Ru(terpy)(bpy)(L)]PF6 complexes, where terpy is 2,2΄:6′,2″– terpyridine, bpy is 2,2΄ - bipyridine and L is monoanions of 4 - bromophenylcyanamide (4 - Brpcyd), 4-methoxyphenylcyanamide (4 - MeOPcyd), 2, 4 - dibromophenylcyanamide (2,4 - Br2pcyd), 2,4-dimethylphenylcyanamide (2,4 - Me2pcyd), 2 - methylphenylcyanamide (2 ...
متن کاملExtended charge accumulation in ruthenium-4H-imidazole-based black absorbers: a theoretical design concept.
A theoretical-guided design concept aiming to achieve highly efficient unidirectional charge transfer and multi-charge separation upon successive photoexcitation for light-harvesting dyes in the scope of supramolecular photocatalysts is presented. Four 4H-imidazole-ruthenium(ii) complexes incorporating a biimidazole-based electron-donating ligand sphere have been designed based on the well-know...
متن کاملIntramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex.
We introduce a new family of complexes with the general formula [Ru(n)(tda)(py)2](m+) (n = 2, m = 0, 1; n = 3, m = 1, 2(+); n = 4, m = 2, 3(2+)), with tda(2-) being [2,2':6',2″-terpyridine]-6,6″-dicarboxylate, including complex [Ru(IV)(OH)(tda-κ-N(3)O)(py)2](+), 4H(+), which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3(2+) under basic conditions. The...
متن کاملFrom 4'-Hydroxy-2,2':6',2''-Terpyridine Complex of Chromium(III) towards Cr2O3 Nanoparticles: Effects of the Calcination Temperature on the Particle Size and Morphology
A new chromium(III) complex containing 4ʹ-hydroxy-2,2ʹ:6ʹ,2ʺ-terpyridine (tpyOH) has been prepared by the reaction of CrCl3. 6H2O with tpyOH in the presence of metallic zinc to afford the new complex [CrCl3(tpyOH)] (1). The complex 1 was used as a suitable precursor for the preparation of Cr2O3 nanoparticles by the simple calcination method at three different annealed temperatures of 400, 600, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 34 شماره
صفحات -
تاریخ انتشار 2011